metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetraaguabis(2-methoxybenzaldehyde isonicotinoylhydrazone)zinc dinitrate

Shaokang Gao,* Zhongwu Fu and Zengyou Wang

Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: gaosk@fzu.edu.cn

Received 23 October 2007; accepted 8 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.101; data-to-parameter ratio = 15.7.

In the title complex, $[Zn(C_{14}H_{13}N_3O_2)_2(H_2O)_4](NO_3)_2$, the Zn atom is located on a center of symmetry. The Zn-O bond distances are 2.0816 (19) and 2.1356 (18) Å, and the Zn-N bond distance is 2.166 (2) Å. The coordination polyhedron is a slightly distorted octahedron. The crystal structure is stabilized by $O-H(coordinated water) \cdots O(NO_3^- or carbonyl O)$ and $N-H(imine) \cdots O(NO_3^{-})$ hydrogen bonds, forming a three-dimensional network.

Related literature

For compounds containing isonicotinoylhydrazone ligands, see: Bu et al. (2000); Fu et al. (2007); Ge et al. (2006). For discussion of Zn-N and Zn-O distances, see: Quirós et al. (1991); Ryu et al. (2005); Sun et al. (2007); Uçar et al. (2006); Zhu et al. (2003).

Experimental

Crystal data

[Zn(C14H13N3O2)2(H2O)4](NO3)2 $M_r = 772.02$ Monoclinic, $P2_1/n$ a = 7.970 (4) Å b = 17.647 (9) Å c = 11.838 (4) Å $\beta = 99.062 (16)^{\circ}$

Data collection

Rigaku Weissenberg IP diffractometer Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999) $T_{\min} = 0.853, T_{\max} = 0.912$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	233 parameters
$wR(F^2) = 0.101$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
3665 reflections	$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond	geometry	(A,	°)
---------------	----------	-----	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O6-H61···O3	0.89	1.87	2.720 (3)	159
$N2-H21\cdots O5^{i}$	0.86	2.19	3.022 (3)	162
O6−H62···O3 ⁱⁱ	0.83	2.00	2.811 (3)	165
O7−H71···O4 ⁱⁱⁱ	0.87	2.24	3.014 (3)	148
$O7-H72\cdots O1^{iv}$	0.81	2.01	2.788 (3)	159

V = 1644.2 (13) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.15 \times 0.12 \text{ mm}$

14941 measured reflections

3665 independent reflections

2955 reflections with $I > 2\sigma(I)$

 $\mu = 0.83 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.053$

Z = 2

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x, -y, -z + 1; (iii) -x + 1, -y, -z + 1; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97.

We are grateful for financial support from the National Natural Science Foundation of China (Nos. 20431010 and 20171012).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2055).

References

- Bu, X.-H., Du, M., Zhang, L., Song, X.-B., Zhang, R.-H. & Clifford, T. (2000). Inorg. Chim. Acta, 308, 143-149.
- Fu, Z., Gao, S. & Liu, S. (2007). Acta Cryst. C63, m459-m461.
- Ge, C.-H., Cui, A.-L., Ni, Z.-H., Jiang, Y.-B., Zhang, L.-F., Ribas, J. & Kou, H.-Z. (2006). Inorg. Chem. 45, 4883-4885.
- McArdle, P. (1995). J. Appl. Cryst. 28, 65.
- Molecular Structure Corporation (1999). TEXRAY and TEXSAN. Versions 1.10. MSC, The Woodlands, Texas, USA.
- Quirós, M., Salas, J. M., Sánchez, M. P., Alabart, J. R. & Faures, R. (1991). Inorg. Chem. 30, 2916-2921.

Ryu, J. Y., Han, J. H., Lee, J. Y., Hong, S. J., Choi, S. H., Kim, C., Kim, S.-J. & Kim, Y. (2005). Inorg. Chim. Acta, 358, 3659-3670.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sun, C.-Y., Li, Y.-G., Wang, E.-B., Xiao, D.-R., An, H.-Y. & Xu, L. (2007). *Inorg. Chem.* 46, 1563–1574.
- Uçar, İ., Karabulut, B., Paşaoğlu, H., Büyükgüngör, O. & Bulut, A. (2006). J. Mol. Struct. **787**, 38–44.
- Zhu, H.-F., Li, L., Fan, J., Zhao, W. & Sun, W.-Y. (2003). *Chin. J. Inorg. Chem.* **19**, 25–28.

Acta Cryst. (2007). E63, m3004-m3005 [doi:10.1107/S1600536807057236]

Tetraaquabis(2-methoxybenzaldehyde isonicotinoylhydrazone)zinc dinitrate

S. Gao, Z. Fu and Z. Wang

Comment

There has been considerable interests in the design and syntheses of transition metal complexes with isonicotinoylhydrazone ligands, owing to that there are multi–dimensional structure or extended multi–dimensional structures in these complexes (Bu *et al.*, 2000; Fu *et al.*, 2007; Ge *et al.*, 2006). As a continued study in these complexes, herein we report the synthesis and crystal structure of complex $[Zn(C_{14}H_{13}N_3O_2)_2(H_2O)_4] \cdot (NO_3)_2$, (I), where $C_{14}H_{13}N_3O_2$ is 2–methoxybenzaldehyde isonicotinoylhydrazonate (*L*).

The complex $[Cd(L)_2(H_2O)_4] \cdot (NO_3)_2$ (II) has been reported (Fu *et al.*, 2007). The title complex I (Fig. 1) and the reported complex II form an isomorphous pair. These two complexes show similar molecular configurations and structure parameters. In I, the Zn atom placed on the center of symmetry. The Zn—O bond distances are 2.0816 (19) and 2.1356 (18)Å for Zn1—O6 and Zn1—O7, respectively. This difference between Zn—O(water) bonds in same compound is 0.054 (2) Å. It is normal among the values reported by Quirós *et al.*, 1991; Ryu *et al.*, 2005; Zhu *et al.*, 2003. While the length of 2.166 (2)Å in Zn1—N1 is in agreement with the values reported by Sun *et al.*, 2007 and Uçar *et al.*, 2006. Therefore, the coordination environment of metal centre displays a slightly distorted octahedron (Fig. 1). The dihedral angle between the phenyl and pyridine ring is 21.5 (1)°, which is little bigger than 18.8 (2)° in II.

The crystal structure is stabilized by hydrogen bonds, and confers a three dimensional network as complex **II**. Every two neighboring complex molecules in complex **I** are linked by O7—H72···O1^{iv} hydrogen bonds, forming a sheet along *bc* plane (Fig. 2). And these sheets were connected along *a* axis into a three dimensional supramolecule *via* the O6—H61···O3, O6—H62···O(3)ⁱⁱⁱ, O7ⁱ—H71ⁱ···O4 and N2ⁱⁱ—H21ⁱⁱ···O5 hydrogen bonds (Fig. 3) (symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x + 1/2, -y + 1/2, z - 1/2; (iii) -x, -y, -z + 1; (iv) x - 1/2, -y + 1/2, z - 1/2).

Experimental

Ligand *L* was prepared according Fu *et al.*, 2007. The zinc nitrate hexahydrate (59 mg, 0.2 mmol) and *L* (51 mg, 0.2 mmol) were mixed and dissolved in 10 ml me thanol. After stirring for an hour, the solution was filtered. Slow evaporation from the solution afforded yellow crystals suitable for *X*–ray diffraction.

Refinement

The H atoms in water molecules were located in different Fourier maps, and then allowed to ride on the oxygen atoms with $U_{iso} = 1.5U_{eq}(O)$. The other H atoms were placed in idealized positions and treated as riding with d(C-H) = 0.93 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic, d(C-H) = 0.96 Å, $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl and d(N-H) = 0.86 Å, $U_{iso}(H) = 1.2U_{eq}(N)$ for the imine group.

Figures

Fig. 1. A view of the title complex, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a spheres of arbitrary radius. Symmetry code: (i), -x + 1, -y, -z + 1.

Fig. 2. The two-dimentional structure of **I** in the *bc* plane. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity. Symmetry code: (iv) x - 1/2, -y + 1/2, z - 1/2.

Fig. 3. The three–dimentional structure of **I**. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity. Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x + 1/2, -y + 1/2, z - 1/2; (iii) -x, -y, -z + 1; (iv) x - 1/2, -y + 1/2, z - 1/2).

Tetraaquabis(2-methoxybenzaldehyde isonicotinoylhydrazone)zinc dinitrate

Crystal data	
[Zn(C14H13N3O2)2(H2O)4](NO3)2	$F_{000} = 800$
$M_r = 772.02$	$D_{\rm x} = 1.559 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 14941 reflections
a = 7.970 (4) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 17.647 (9) Å	$\mu = 0.83 \text{ mm}^{-1}$
c = 11.838 (4) Å	T = 293 (2) K
$\beta = 99.062 \ (16)^{\circ}$	Prism, yellow
$V = 1644.2 (13) \text{ Å}^3$	$0.20\times0.15\times0.12\ mm$
Z = 2	

Data collection

Rigaku Weissenberg IP diffractometer	2955 reflections with $I > 2\sigma(I)$
Radiation source: Fine-focus sealed tube	$R_{\rm int} = 0.053$
Monochromator: Graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.1^{\circ}$
φ–scan	$h = -8 \rightarrow 10$
Absorption correction: Empirical (TEXRAY; Molecular Structure Corporation, 1999)	$k = -22 \rightarrow 22$
$T_{\min} = 0.853, T_{\max} = 0.912$	$l = -15 \rightarrow 15$
14941 measured reflections	Standard reflections: None
3665 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: Difmap
Least-squares matrix: Full	Hydrogen site location: Geom
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.101$	$w = 1/[\sigma^2(F_o^2) + (0.0413P)^2 + 1.115P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{max} < 0.001$
3665 reflections	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
233 parameters	$\Delta \rho_{min} = -0.49 \text{ e} \text{ Å}^{-3}$
Primary atom site location: Direct	Extinction correction: None

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor *wR* and goodness of fit S are based on F^2 , conventional R-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
0.5000	0.0000	0.5000	0.02783 (11)
0.5422 (2)	0.11807 (10)	0.54594 (15)	0.0297 (4)
0.6791 (3)	0.39700 (10)	0.53791 (16)	0.0391 (5)
0.6215	0.3849	0.4728	0.047*
0.7507 (3)	0.46831 (11)	0.55469 (17)	0.0407 (5)
0.1088 (3)	0.09550 (13)	0.71546 (18)	0.0460 (5)
0.7721 (3)	0.36189 (9)	0.72069 (14)	0.0500 (5)
0.6753 (4)	0.59321 (12)	0.27438 (18)	0.0836 (9)
0.0344 (3)	0.07244 (13)	0.62089 (17)	0.0603 (6)
0.2662 (3)	0.09405 (17)	0.7342 (2)	0.0822 (8)
0.0287 (3)	0.11849 (15)	0.78818 (17)	0.0775 (8)
0.2392 (2)	0.01951 (10)	0.47521 (16)	0.0432 (4)
0.1961	0.0371	0.5349	0.065*
0.1652	-0.0061	0.4356	0.065*
0.4919 (2)	0.02614 (10)	0.32308 (14)	0.0415 (4)
0.5698	0.0062	0.2889	0.062*
0.4224	0.0505	0.2806	0.062*
0.4726 (3)	0.17490 (13)	0.47888 (19)	0.0368 (5)
0.3919	0.1632	0.4156	0.044*
	x 0.5000 0.5422 (2) 0.6791 (3) 0.6215 0.7507 (3) 0.1088 (3) 0.7721 (3) 0.6753 (4) 0.0344 (3) 0.2662 (3) 0.287 (3) 0.2392 (2) 0.1961 0.1652 0.4919 (2) 0.5698 0.4224 0.4726 (3) 0.3919	x y 0.5000 0.0000 $0.5422 (2)$ $0.11807 (10)$ $0.6791 (3)$ $0.39700 (10)$ 0.6215 0.3849 $0.7507 (3)$ $0.46831 (11)$ $0.1088 (3)$ $0.09550 (13)$ $0.7721 (3)$ $0.36189 (9)$ $0.6753 (4)$ $0.59321 (12)$ $0.0344 (3)$ $0.07244 (13)$ $0.2662 (3)$ $0.09405 (17)$ $0.287 (3)$ $0.11849 (15)$ $0.2392 (2)$ $0.01951 (10)$ 0.1961 0.0371 0.1652 -0.0061 $0.4919 (2)$ $0.2614 (10)$ 0.5698 0.0062 $0.4726 (3)$ $0.17490 (13)$ 0.3919 0.1632	xyz0.50000.00000.50000.5422 (2)0.11807 (10)0.54594 (15)0.6791 (3)0.39700 (10)0.53791 (16)0.62150.38490.47280.7507 (3)0.46831 (11)0.55469 (17)0.1088 (3)0.09550 (13)0.71546 (18)0.7721 (3)0.36189 (9)0.72069 (14)0.6753 (4)0.59321 (12)0.27438 (18)0.0344 (3)0.07244 (13)0.62089 (17)0.2662 (3)0.09405 (17)0.7342 (2)0.0287 (3)0.11849 (15)0.78818 (17)0.2392 (2)0.01951 (10)0.47521 (16)0.19610.03710.53490.1652-0.00610.43560.4919 (2)0.02614 (10)0.32308 (14)0.56980.00620.28890.42240.05050.28060.4726 (3)0.17490 (13)0.47888 (19)0.39190.16320.4156

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C2	0.5161 (3)	0.25000 (13)	0.49998 (19)	0.0372 (5)
H2	0.4658	0.2878	0.4513	0.045*
C3	0.6351 (3)	0.26846 (12)	0.59417 (18)	0.0309 (5)
C4	0.7015 (3)	0.21004 (13)	0.66525 (19)	0.0360 (5)
H4	0.7786	0.2203	0.7310	0.043*
C5	0.6527 (3)	0.13666 (12)	0.63803 (19)	0.0347 (5)
Н5	0.6993	0.0981	0.6865	0.042*
C6	0.7003 (3)	0.34722 (12)	0.62393 (18)	0.0345 (5)
C7	0.7243 (4)	0.51018 (13)	0.4674 (2)	0.0429 (6)
H7	0.6562	0.4923	0.4018	0.051*
C8	0.7972 (3)	0.58583 (13)	0.4663 (2)	0.0387 (5)
C9	0.7676 (4)	0.62883 (14)	0.3661 (2)	0.0457 (6)
C10	0.8338 (4)	0.70137 (15)	0.3637 (3)	0.0544 (7)
H10	0.8120	0.7305	0.2975	0.065*
C11	0.9317 (4)	0.72970 (16)	0.4601 (3)	0.0584 (8)
H11	0.9745	0.7787	0.4594	0.070*
C12	0.9675 (4)	0.68698 (16)	0.5574 (3)	0.0619 (8)
H12	1.0373	0.7063	0.6212	0.074*
C13	0.8998 (4)	0.61541 (15)	0.5606 (2)	0.0494 (7)
H13	0.9236	0.5867	0.6270	0.059*
C14	0.6210 (5)	0.63421 (19)	0.1741 (3)	0.0685 (9)
H141	0.5616	0.6010	0.1171	0.103*
H142	0.7178	0.6555	0.1465	0.103*
H143	0.5465	0.6742	0.1899	0.103*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0319 (2)	0.01876 (17)	0.03134 (19)	-0.00072 (14)	0.00039 (13)	0.00013 (13)
N1	0.0360 (11)	0.0208 (8)	0.0301 (9)	-0.0031 (7)	-0.0014 (7)	-0.0001 (7)
N2	0.0580 (14)	0.0230 (9)	0.0320 (10)	-0.0104 (9)	-0.0059 (9)	0.0001 (7)
N3	0.0596 (14)	0.0224 (9)	0.0374 (11)	-0.0087 (9)	-0.0005 (9)	0.0005 (8)
N4	0.0534 (15)	0.0390 (12)	0.0420 (12)	0.0053 (10)	-0.0039 (10)	-0.0036 (9)
01	0.0787 (14)	0.0295 (9)	0.0347 (9)	-0.0137 (9)	-0.0128 (9)	0.0005 (7)
O2	0.144 (3)	0.0406 (12)	0.0522 (13)	-0.0262 (14)	-0.0281 (14)	0.0150 (9)
O3	0.0534 (12)	0.0781 (15)	0.0476 (11)	-0.0089 (11)	0.0027 (9)	-0.0230 (10)
O4	0.0555 (16)	0.101 (2)	0.0851 (17)	-0.0147 (14)	-0.0039 (12)	-0.0202 (15)
05	0.0921 (18)	0.0979 (19)	0.0391 (11)	0.0547 (15)	-0.0002 (11)	-0.0087 (11)
O6	0.0329 (9)	0.0440 (10)	0.0510 (10)	0.0008 (7)	0.0014 (7)	-0.0118 (8)
07	0.0533 (11)	0.0350 (8)	0.0354 (9)	0.0093 (8)	0.0043 (7)	0.0047 (7)
C1	0.0445 (14)	0.0263 (11)	0.0348 (12)	-0.0010 (10)	-0.0082 (10)	-0.0009 (9)
C2	0.0492 (15)	0.0234 (10)	0.0337 (11)	-0.0011 (10)	-0.0097 (10)	0.0027 (8)
C3	0.0403 (13)	0.0218 (10)	0.0288 (10)	-0.0016 (9)	0.0001 (9)	-0.0001 (8)
C4	0.0435 (14)	0.0279 (11)	0.0322 (11)	-0.0054 (10)	-0.0076 (9)	0.0012 (8)
C5	0.0440 (14)	0.0239 (10)	0.0330 (11)	-0.0018 (9)	-0.0032 (9)	0.0047 (8)
C6	0.0470 (14)	0.0227 (10)	0.0314 (11)	-0.0046 (9)	-0.0016 (9)	-0.0003 (8)
C7	0.0610 (17)	0.0271 (12)	0.0371 (13)	-0.0070 (11)	-0.0029 (11)	0.0009 (9)
C8	0.0494 (15)	0.0249 (11)	0.0409 (13)	-0.0031 (10)	0.0040 (10)	0.0021 (9)

С9	0.0620 (18)	0.0283 (12)	0.0448 (14)	-0.0049 (11)	0.0024 (12)	0.0029 (10)
C10	0.077 (2)	0.0312 (13)	0.0550 (17)	-0.0067 (13)	0.0116 (14)	0.0105 (11)
C11	0.074 (2)	0.0289 (13)	0.073 (2)	-0.0169 (13)	0.0128 (16)	0.0012 (13)
C12	0.075 (2)	0.0404 (16)	0.0641 (19)	-0.0207 (15)	-0.0071 (15)	-0.0045 (13)
C13	0.0639 (19)	0.0334 (13)	0.0474 (15)	-0.0093 (12)	-0.0025 (13)	0.0028 (10)
C14	0.098 (3)	0.0541 (19)	0.0482 (17)	-0.0007 (18)	-0.0056 (16)	0.0134 (14)
Geometric param	neters (Å, °)					
Zn1—O6 ⁱ		2.0816 (19)	C1-	-H1	0.930	0
Zn1—O6		2.0816 (19)	C2-	C3	1.384	(3)
Zn1—O7		2.1356 (18)	C2-	-H2	0.930	0
Zn1—O7 ⁱ		2.1356 (18)	С3-	-C4	1.382	2 (3)
Zn1—N1 ⁱ		2.166 (2)	С3-	-C6	1.506	(3)
Zn1—N1		2.166 (2)	C4-	-C5	1.376	(3)
N1—C5		1.330 (3)	C4–	-H4	0.930	0
N1—C1		1.343 (3)	C5–	-H5	0.930	0
N2—C6		1.335 (3)	С7—	-C8	1.457	(3)
N2—N3		1.383 (3)	С7—	-H7	0.930	0
N2—H21		0.8600	C8–	-C13	1.378	(4)
N3—C7		1.260 (3)	C8–	-С9	1.397	(3)
N4—O5		1.219 (3)	С9-	-C10	1.386 (4)	
N4—O4		1.240 (3)	C10	—C11	1.372	2 (4)
N4—O3		1.250 (3)	C10	—H10	0.930	00
O1—C6		1.225 (3)	C11-	—C12	1.368	5 (4)
О2—С9		1.365 (3)	C11-	—H11	0.930	00
O2—C14		1.399 (3)	C12	—C13	1.376	(4)
O6—H61		0.8884	C12	—H12	0.930	0
O6—H62		0.8270	C13	—Н13	0.930	0
O7—H71		0.8673	C14—H141		0.9600	
O7—H72		0.8106	C14	—H142	0.9600	
C1—C2		1.383 (3)	C14	—H143	0.960	0
O6 ⁱ —Zn1—O6		180.0	C4-	-C3C6	117.4	5 (19)
O6 ⁱ —Zn1—O7		92.82 (7)	C2-	-C3-C6	124.9	6 (19)
O6—Zn1—O7		87.18 (7)	C5–	C4C3	119.5	(2)
O6 ⁱ —Zn1—O7 ⁱ		87.18 (7)	C5–	-C4H4	120.3	
O6—Zn1—O7 ⁱ		92.82 (7)	С3—	C4H4	120.3	
O7—Zn1—O7 ⁱ		180.0	N1-	C5C4	123.4	(2)
O6 ⁱ —Zn1—N1 ⁱ		89.33 (7)	N1-	-С5—Н5	118.3	
O6—Zn1—N1 ⁱ		90.67 (7)	C4	-С5—Н5	118.3	
O7—Zn1—N1 ⁱ		88.97 (7)	01–	C6N2	123.9	(2)
$O7^{i}$ —Zn1—N1 ⁱ		91.03 (7)	01–	-C6-C3	120.5	(2)
O6 ⁱ —Zn1—N1		90.67 (7)	N2-	C6C3	115.5	4 (19)
O6—Zn1—N1		89.33 (7)	N3-	С7С8	122.0	(2)
O7—Zn1—N1		91.03 (7)	N3-	—С7—Н7	119.0	
O7 ⁱ —Zn1—N1		88.97 (7)	C8-	-С7—Н7	119.0	

N1 ⁱ —Zn1—N1	180.00 (9)	C13—C8—C9	118.8 (2)
C5—N1—C1	117.29 (19)	C13—C8—C7	121.8 (2)
C5—N1—Zn1	119.97 (14)	C9—C8—C7	119.4 (2)
C1—N1—Zn1	122.44 (15)	O2—C9—C10	124.6 (2)
C6—N2—N3	119.29 (19)	O2—C9—C8	115.0 (2)
C6—N2—H21	120.4	C10—C9—C8	120.3 (3)
N3—N2—H21	120.4	C11—C10—C9	119.2 (3)
C7—N3—N2	113.8 (2)	C11-C10-H10	120.4
O5—N4—O4	120.5 (2)	С9—С10—Н10	120.4
O5—N4—O3	120.9 (3)	C12—C11—C10	121.0 (3)
O4—N4—O3	118.6 (2)	C12—C11—H11	119.5
C9—O2—C14	119.5 (2)	C10-C11-H11	119.5
Zn1—O6—H61	116.6	C11—C12—C13	119.9 (3)
Zn1—O6—H62	126.6	C11—C12—H12	120.1
Н61—О6—Н62	108.1	C13—C12—H12	120.1
Zn1—O7—H71	117.2	C12—C13—C8	120.7 (3)
Zn1—O7—H72	129.4	С12—С13—Н13	119.6
Н71—О7—Н72	113.3	С8—С13—Н13	119.6
N1—C1—C2	122.7 (2)	O2—C14—H141	109.5
N1—C1—H1	118.6	O2—C14—H142	109.5
C2—C1—H1	118.6	H141—C14—H142	109.5
C1—C2—C3	119.4 (2)	O2—C14—H143	109.5
C1—C2—H2	120.3	H141—C14—H143	109.5
С3—С2—Н2	120.3	H142—C14—H143	109.5
C4—C3—C2	117.6 (2)		
06 ⁱ —Zn1—N1—C5	-46.33 (18)	C4—C3—C6—O1	-19.0 (4)
O6—Zn1—N1—C5	133.67 (18)	C2—C3—C6—O1	162.2 (3)
O7—Zn1—N1—C5	-139.16 (18)	C4—C3—C6—N2	158.8 (2)
07 ⁱ —Zn1—N1—C5	40.84 (18)	C2-C3-C6-N2	-20.0 (4)
O6 ⁱ —Zn1—N1—C1	127.22 (19)	N2—N3—C7—C8	-176.6 (2)
O6—Zn1—N1—C1	-52.78 (19)	N3—C7—C8—C13	0.3 (4)
O7—Zn1—N1—C1	34.38 (19)	N3—C7—C8—C9	178.2 (3)
O7 ⁱ —Zn1—N1—C1	-145.62 (19)	C14—O2—C9—C10	-9.4 (5)
C6—N2—N3—C7	179.2 (3)	C14—O2—C9—C8	172.3 (3)
C5—N1—C1—C2	2.4 (4)	C13—C8—C9—O2	175.3 (3)
Zn1—N1—C1—C2	-171.35 (19)	С7—С8—С9—О2	-2.6 (4)
N1—C1—C2—C3	-0.5 (4)	C13—C8—C9—C10	-3.1 (4)
C1—C2—C3—C4	-1.9 (4)	C7—C8—C9—C10	179.0 (3)
C1—C2—C3—C6	176.8 (2)	O2—C9—C10—C11	-176.8 (3)
C2—C3—C4—C5	2.4 (4)	C8—C9—C10—C11	1.4 (5)
C6—C3—C4—C5	-176.5 (2)	C9—C10—C11—C12	1.3 (5)
C1—N1—C5—C4	-1.9 (4)	C10-C11-C12-C13	-2.3 (5)
Zn1—N1—C5—C4	171.99 (19)	C11—C12—C13—C8	0.5 (5)
C3—C4—C5—N1	-0.5 (4)	C9—C8—C13—C12	2.1 (5)
N3—N2—C6—O1	4.3 (4)	C7—C8—C13—C12	179.9 (3)
N3—N2—C6—C3	-173.4 (2)		
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
O6—H61…O3	0.89	1.87	2.720 (3)	159
N2—H21···O5 ⁱⁱ	0.86	2.19	3.022 (3)	162
O6—H62…O3 ⁱⁱⁱ	0.83	2.00	2.811 (3)	165
O7—H71···O4 ⁱ	0.87	2.24	3.014 (3)	148
07—H72…O1 ^{iv}	0.81	2.01	2.788 (3)	159
			1/2 1/2	

Symmetry codes: (ii) x+1/2, -y+1/2, z-1/2; (iii) -x, -y, -z+1; (i) -x+1, -y, -z+1; (iv) x-1/2, -y+1/2, z-1/2.

Fig. 2

